Liouville type theorems for fractional and higher-order fractional systems

نویسندگان

چکیده

In this paper, we first establish decay estimates for the fractional and higher-order H\'enon-Lane-Emden systems by using a nonlocal average integral estimates, which deduce result of non-existence. Next, apply method scaling spheres introduced in \cite{DQ2} to derive Liouville type theorem. We also construct an interesting example on super $\frac{\alpha}{2}$-harmonic functions (Proposition 1.2).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances

In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...

متن کامل

Fractional-Order Iterative Learning Control for Fractional-Order Linear Systems

In this paper, we discuss in time domain the convergence of the iterative process for fractional-order systems. Fractional order iterative learning updating schemes are considered. The convergent conditions of the fractional-order and integer-order iterative learning schemes are proved to be equivalent. It is shown in Matlab/Simulink results that the tracking speed is the fastest when the syste...

متن کامل

Liouville-Type Theorems for Some Integral Systems

/2 ( ) ( ) u u        where  is the Fourier transformation and  its inverse. The question is to determine for which values of the exponents pi and qi the only nonnegative solution (u, v) of (1) and (2) is trivial, i.e., (u; v) = (0, 0). When 2   , is the case of the Emden-Fowler equation 0 , 0     u u u k in N  (5) When ) 3 )( 2 /( ) 2 ( 1      N N N k , it has been prove...

متن کامل

Existence and Continuation Theorems of Riemann-Liouville Type fractional differential equations

In this paper we study the existence and continuation of solution to the general fractional differential equation (FDE) with Riemann–Liouville derivative. If no confusion appears, we call FDE for brevity. We firstly establish a new local existence theorem. Then, we derive the continuation theorems for the general FDE, which can be regarded as a generalization of the continuation theorems of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2021

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2020361